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Abstract
Artificial Neural Networks are relatively crude electronic
models based on the neural structure of the brain4. Several
forms of Neural Networks have been modelled for different
applications. In this study, we developed a simple multi-layer
perceptron neural network(MLP) and a Convolutional Neural
Network(CNN) and gauged their performance on classifica-
tion of the CIFAR10 image dataset. By developing the neural
networks from scratch, we were able to vary several parame-
ters of the Networks. We tried different activation functions
and observed that for both models the Rectified Linear Unit
(ReLU) activation function performed better than others. We
also observed that the performance of the network varied with
the number of layers. Overall, we observed that for image
classification, Convolutional neural Networks performed bet-
ter that a simple multi-layer perceptron for image classifica-
tion. Using different evaluation metrics we, for example, ob-
served that CNN had a 87.06% classification accuracy while
MLP had 27% accuracy, both on their respective test sets.

1 Introduction

1.1 motivation
Machine Learning models for image classification have been stud-
ies by many researchers. This is one of the key tasks in image
processing. The goal of image classification is to predict the cat-
egories of the input image using its features5. This is an impor-
tant task in many aspects. Qing Li, et al.6 for example observed
that image classification is used in medical imaging applications
like lung cancer detection. Various approaches have been used for
this application. Our study focuses on artificial neural networks.
Specifically we try to understand on MLP and CNN perform on
this task. Through various experiments, we aim to see if by adjust
some components of the respective neural networks we can get to
improve their performance.

1.2 Experimental Approach
The two image classification approaches were implemented from
scratch in this experiment. This allowed us to study the impact
of changing different characteristic of the models on their perfor-
mance. We varied different activation function used, optimization
approaches and the number of layers in then networks. We also
increase the number of epoch used in the forward-backwards
iterations to increase the efficiency of the networks. To study
the performance of the developed models, the image dataset
CIFAR107 was used. Several pre-processing techniques where

applied to the dataset. One-hot encoding and normalization were
used to flatten the features.

our investigation indicated that overall Convolutional Neu-
ral Networks had a better performance when tasked with image
classification as compared to a simple Multi-Layer Perceptron.
Increasing the number of number of layers and epoch used in
training the MLP did not improve its performance relative to
CNN. with an evaluation classification accuracy of 87.06%, CNN
had a better performance compared to 27% obtained by MLP on
the same dataset.

2 Related Works

2.1 Image classification by Multi-layer Perceptron
The task of image classification aims to predict the categories of
input images using their features. Researchers have developed and
trained various artificial neural network structures for image clas-
sification. Sahoo et al. (2006)8 studied multi-layer perceptrons
and observed that multi-layer perceptrons are a class of univer-
sal approximators. This means that provided sufficiently many
hidden units are available, networks with as few as one hidden
layer using arbitrary squashing functions can give an approxima-
tion with any desired degree of accuracy. G. M. Foody (2004)9

proposes a multi-layer perceptron structure trained with a back-
propagation for image classification. Benediktsson et al. 1990,
observes that this approach is able to classify imagery data more
accurately than a variety of other widely used approaches10

2.2 Image classification by Convulational Neural
Network

3 DataSet
We are using CIFAR-10 dataset which is a subset of the 80 mil-
lion tiny images dataset that were collected by Alex Krizhevsky,
Vinod Nair, and Geoffrey Hinton. The CIFAR-10 dataset consists
of 60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test images.
The dataset is divided into five training batches and one test batch,
each with 10000 images. The test batch contains exactly 1000
randomly-selected images from each class. The training batches
contain the remaining images in random order, but some training
batches may contain more images from one class than another.
Between them, the training batches contain exactly 5000 images
from each class1.The class labels and their standard associated in-
teger values are list below:[aiplane , automobile, bird ,cat ,deer,
dog, frog , horse , ship , truck]
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4 Convolutional Neural Network
In deep learning, a convolutional neural network (CNN, or Con-
vNet) is a class of deep neural networks, most commonly ap-
plied to analyzing visual imagery. They are also known as shift
invariant or space invariant artificial neural networks (SIANN),
based on their shared-weights architecture and translation invari-
ance characteristics. They have applications in image and video
recognition, recommender systems,image classification, medical
image analysis, natural language processing, and financial time
series.
CNNs are regularized versions of multilayer perceptrons. Multi-
layer perceptrons usually mean fully connected networks, that is,
each neuron in one layer is connected to all neurons in the next
layer. The ”fully-connectedness” of these networks makes them
prone to overfitting data. Typical ways of regularization include
adding some form of magnitude measurement of weights to the
loss function. CNNs take a different approach towards regulariza-
tion: they take advantage of the hierarchical pattern in data and
assemble more complex patterns using smaller and simpler pat-
terns. Therefore, on the scale of connectedness and complexity,
CNNs are on the lower extreme.[2]

4.1 Base Line model : VGG
• VGG neural networks Previous derivative of AlexNet fo-

cused on smaller window sizes and strides in the first con-
volutional layer, VGG addresses another very important as-
pect of CNNs i.e. depth of the network.

• InputVGG takes in 224x244 pixel RGB image.

• Convolutional layers The Convolutional Layers in VGG
use a very small receptive field ( 3x3, the smallest possible
size that still captures left/right and up/down). There are
also 1x1 convolutional filters which act as a linear trans-
formation of the input, which is followed by a ReLU unit.
The convolution stride is fixed to 1 pixel so that the spatial
resolution is preserved after convolution.

• Fully Connected Layers VGG has Three fully-connected
layers: the first two have 4096 channels each and the third
has 1000 channels, 1 for each class.

• Hidden layers All of VGG’s hidden layers use ReLU as
activation function. VGG does not generally use locally re-
sponse normalization, as LRN increase memory consump-
tion and training time with no particular increase in accu-
racy.

• VGG is an innovative object-recognition model that sup-
ports up to 19 layers. Built as a deep CNN, VGG also out-
performs baselines on many task and datasets. VGG is now
still one of the most used image-recognition architecture.[3]

5 Model Design

5.1 Libraries used
Keras, Tensorflow, Matplotlib , PlaidMl [For GPU acceleration on
AMD GPU]

5.2 Pre-processing Dataset
In our Dataset we have 50000 examples in the training dataset and
1000 in the test dataset and images are square with 32x32 pizels
and color with three channels.

• One hot encoding : There are 10 classes in the CIFAR-10
dataset represented as unique integers. Therefore, we use
one hot encoding for class element of each sample trans-
forming the integer into a 10 element binary vector with
a 1 for the index of class value. For this purpose we use
keras.to categorical utility function provided by keras for
one hot encoding.

• Normalization : Pixel value in the dataset are unsinged
integers in the range between 0 and 255. To make efficiency,
we re-scale the values between 0 and 1 by dividing the pixel
values by 255 i.e. maximum pixel value.

5.3 Building Multi-Layer Perceptron
Multi-layer perceptron is a type of network where multiple layers
of a group of perceptron are stacked together to make a model.
The model takes inputs, multiplies them by weights and adds a
bias to produce inputs.

f(X) = W.X + b

To add non-linearity to our network, we implemented Rectified
Linear Units(ReLu) activation function. ReLU function is zero
for any input value below zero and the same value for values
greater than zero. The layers have both feed-forward and and
backpropagation loops. The forward loop inputs data and gener-
ates output. The backpropagation loops on the other hand trains
the model by adjusting weights and minimize the output loss.
To quantify loss, we created a loss function. Since we are using
probabilities to make predictions, for better numerical stability
we used Log-softmax.

Log − softmax = −acorrect + log
∑
i

eai

Using the layers we built earlier one, we defined our Multi-Layer
perceptron as a list of layers that feed input into each other. We
built Mini-Batch Stochastic Gradient Descent from scratch. Us-
ing this, we split the data into min-batches and feed each of the
batches into the network while updating weights and every itera-
tion.

5.3.1 Experimental setting and Model Parameters

Efforts to experiment across parameter values on the dataset was
made. We used different activation functions and studied their
impact. For MLP, we ReLU and Sigmoid activation functions
were used. We varied the size of mini-batches used for training.
To study the effect of density and number of layers, we tried
a network of 2 layers and another with 3 layers with varying
numbers of units. The output layer had 10 units that used
softmax activation function with stochastic gradient descent. The
networks were trained multiple times, increasing the number of
Epochs on every iteration and the performance of the models
was recorded as seen in the Results section(Section 6). Over
the course of training the models, we recorded the cross entropy
loss and plotted it against the epoch number. We also plotted
the accuracy against the respective epoch. We also experimented
on the effect of batch size by varying the sizes on multiple runs.
However, due to computational resources, we did not get to
explore many batch size variations. We present the results of the
experiment and best performing parameters in section 6(Results)

To optmize our model, we used mini-batch Stochastic gra-
dient descent and initialized the weights for the non-linearity
using Xavier initialization.



5.4 CNN models explored

After preprocessing the data, we now define our neural network
model to be trained on our training set. Due to limited computa-
tion resources we don’t perform cross validation and instead uses
test dataset to test accuracy of our trained model. For training pur-
poses, we provide an upper limit of 150 epochs and batch size of
64. Our models are trained on GCP cloud instance with TESLA
T4 and TESLA k80 gpus.
For our image classification purpose we compare various mod-
els and optimization techniques. We choose VGG models as our
baseline models. Choice of Baseline model is based on easy to
understand architecture and performance enlisted.
Our network architecture involves stacking convolutional layers
with small 3x3 filters followed by max pooling layer ,down sam-
pling feature maps. Together, these layers form a block, and these
blocks can be repeated where the number of filters in each block
is increased with the depth of the network. Paddig is used on the
convolutional layers to ensure the height and width of the out-
put feature maps matches the inputs. For our activation function
we compared mainly three activation functions for hidden layers.
Sigmoid, tanh , ReLU , elu.

In our Model, the feature maps output from the feature extrac-
tion part of the model is flattened. We interpret them with one or
more fully. connected layers, and then output a prediction. The
output layers have 10 nodes for the 10 classes and uses the soft-
max activation function.

Model was optimized using Stochastic Gradient Descent
with 50 epochs, momentum=0.9 and learning rate = 0.001

6 Results

6.1 VGG3

We compared 1, 2, 3 block VGG as our models for training pur-
pose. All the models were trained for 50 epochs initially. VGG
with 1 block performed worse with training set accuracy of 99.9%
and test set accuracy of 66.75%. Similarly, VGG with 2 block at-
tained accuracy score of 99.90% on training dataset and 71.51%
on test dataset. Finally VGG with 3 block performed best with
accuracy score of almost 100.0% on training dataset and 73.86%
on test dataset.

Figure 1: VGG3 learning curve

Dataset Accuracy
Training set 100.0
Testing set 73.86

Table 3: 3block VGG model results

Figure 2: VGG3 learning curve

All VGG3 models continuous improvement on test dataset at least 50
epochs. Therefore models have sufficient capacity to learn the weights.
By comparing result of all the three models we can conclude that our ac-
curacy increases with increase in depth of the network. So if we increase
the depth of the model we can see some drastic increase in the accuracy.
That can be the reason why VGG16 and VGG19 tend to perform ex-
tremely well on image classification tasks.
Since VGG3 model starts to showcase the high variance trend(overfit) af-
ter 20 - 30 epochs we need to add regularization. One proposed solution
is to slow down the rate of convergence by using techniques such as data
augmentation, variable learning rate, different batch size , batch normal-
ization, dropout technique.vFor further model improvement we are going
to use VGG3 model just because deeper models tends to perform better
on complex task such as image classification.

6.2 Variation of activation functions
For every layer in the network we choose to test different activation
functions and comparison for activation function selection. We compared
’sigmoid’ , ’tanh’, ’elu’ , ’ReLU’ activation function for our VGG3
Model.
for our test VGG3 model used 50 epochs and learning rate = 0.001 for
better convergence without exhausting limited computation resources
available.

Activation Function Test Accuracy
Sigmoid 10.00
tanh 73.33
elu 72.94
ReLU 73.86

Out of all the activation functions tested on our VGG3 network
Sigmoid tends to perform the worst out of all the activation functions
with test accuracy of 10.00%. The reason for such a low accuracy can
either be vanishing gradient problem or Sigmoid has slow convergence
and might need high amount of epochs to converge. ’ReLU’ activation
function outperformed ’tanh’,’elu’ with slight margin.

6.3 Regularization technique
we could try various regularization techniques that can helps with
overfitting. Techniques that help in slowing down the convergence rate
tends to help more in the case of high variance. We choose ’ReLU’
choose activation function and ’softmax’ function for classification
problem to compute the probabilities for the classes.

6.3.1 Dropout Regularization

The Key idea of dropout is randomly drop units ( along with their con-
nections ) from the neural network during training process. This prevents



units from co-adapting too much. During training, dropout samples from
an exponential number of different ”thinned” networks. At test time, it
is easy to approximate the effect of averaging the predictions of all these
thinned networks by simply using a single unthinned network that has
smaller weights. This is significantly reduces overfitting and gives major
improvement over the regularization methods.12

dropout can be added to the model by adding new dropout layers, where
the amount of nodes removed is specified as a parameter. First we tried to
add dropout layers after each max pooling layer and after the fully con-
nected layer, and used a fixed dropout rate of 0.2 i.e. we retain 80% of the
nodes. Then we try to use variable dropout rate to overcome overfitting.
Using dropout rate = 0.2 we achieved training score of 83.68% and test
score of 80.82%.

Figure 3: VGG3 model with droptout rate =0.2 (80% network
retention)

And a Dropout rate of 0.5 achieved a score of 65.85% on training
dataset and 70.51% on test dataset.

Figure 4: VGG3 model with droptout rate =0.5 (50% network
retention)

We invested the effect of variations of dropout in model. we used
dropout pattern of 0.2 dropout rate for first layer, 0.3 dropout rate for
second layer and dropout rate of 0.4 and 0.5 for next two layer.14. using
Variable dropout rate resulted in score of 75.31% on training dataset and
77.77% on test dataset.

Figure 5: VGG3 model with variable Dropout rate

6.3.2 Weight Regularization

Weigh Decay is another technique out there to reduce the overfitting of
a deep learning neural network model on the training data and improve
the performance of the model on new data such as the holdout test set.
Weight regularization involves updating the loss function to penalize the
model in proportion to the size of the model weights. larger weights re-
sult in more complex and less stable model, whereas weights are often
more stable and more general. Weight Regularization can be considered
as weight shrinkage. For our model optimization we added weight reg-
ularization to the convolutional layers and fully connected layers. with
l2 penalty=0.001 we achieved a score of 76.00% on training dataset and
score of 70.10% test dataset. From the above result we can conclude that
weight regularization didn’t effect the model’s accuracy considerably.

6.3.3 Data Augmentation

Image data augmentation is quite useful technique used to increase the
test dataset accuracy in image classification task. Image data augmen-
tation is a technique that can be used to artificially expand the size of a
training dataset by creating modified versions of images in the dataset.
When we feed image data into a neural network, there are some features
of images that we would like the neural network to condense or summa-
rize into a set of numbers of weights. In the case of image classification,
these features or signals are the pixels which make up the object in the
picture. On the other hand, there are features of the images that we would
not like the neural network to incorporate in its summary of the images(
the summary is the set of weights). In case of image classification, these
features or noise are pixels which form the background in the picture.
One solution is to create multiple alterations of each image, where the
signal or the object in the picture is kept invariant, whilst the noise or the
background is distorted. These distortions include cropping, scaling and
rotating the image , among others. Therefore, the network of neurons
observes the in variance in the images and encodes this information or
signal is the set weights which summarize the training data. 3

There are different type of data augmentation that could be used. Our
main goal during data augmentation is to preserve as much as informa-
tion possible. The types of random augmentation that could be useful in-
clude a horizontal flip, minor shifts of image and 10% shifts in the height
and width of the image.Data augmentation helped us to achieve score of
85.04 on training dataset and score of 81.85 on test dataset.

Figure 6: VGG3 model with Data Augmentation

6.3.4 Further Optimization

From the results , presented above, we concluded that dropout rate = 0.2,
and data augmentation both helped in boosting testing the accuracy on
test dataset and avoid any overfitting. We saw further boost in accuracy
after combining both dropout and data augmentation techniques. Using
Data augmentation and dropout rate of 0.2 resulted in training accuracy
of 64.87% and test accuracy of 67.21%. Combining both regularization
technique, Dropout and Data augmentation, resulted in higher accuracy
on test dataset. Learning curves provide additional information about
convergence of our model. The convergence behaviour of the model
is overall better than either fixed dropout and data augmentation alone.
Learning has been slowed without overfitting, allowing continued
improvement. To further increase the model accuracy we can use the
variable dropout with high dropout rate as we go deeper in network.



Finally we can use batch normalization15 Batch normalization is a
technique for improving the speed, performance, and stability of Neural
Networks. It is used to normalize the input layer by re-centering and
re-scaling.

For the final model, we used Stochastic gradient descent for better
optimization of objective function, Variable dropout ( increasing dropout
with increasing depth of the model ), Data augmentation and batch
normalization and learning rate = 0.001 for better convergence and epoch
= 200 , so that model has enough time to learn weights and finally using
momentum of 0.9 to avoid getting stuck in local minima and speed up
convergence of gradient descent.

Final Model Results
Dataset Accuracy
Training accuracy 85.94
Test accuracy 87.06

For

Figure 7: VGG3 with Data Augmentation + dropout rate=0.2

the final model training we increased the epochs from 50 to 200 in
order to give a chance to model to learn. Reason of high accuracy after
increasing epochs from 50 to 200 might be due to the fact that addition
of all these regularization technique slowed down the learning process
and hence need far greater number of epochs to regain 80%+ accuracy
on test data. From learning curve we can confirm that models shows
continued improvement for nearly 200 epochs. Therefore increasing
epochs further might result in higher accuracy. For further improvement
of the model we can add early stopping with with a patience set between
20 and 100. But due to limited resource and time we exhaust our model
optimization with dropout , batch normalization, dataset normalization,
SGD, and data agumentation with a final accuracy on test data equal to
87.06%.

6.4 Multi-Layer PERCEPTRON
6.4.1 Activation function against test set accuracy

Activation function Accuracy
Sigmoid 27.0
ReLu 27.0

Sigmoid and ReLU where used for hidden layers while Log-softmax was
used for output layers in all experiments

6.4.2 Number of hidden layers against accuracy

Hidden
Layers

Number
of units

Training
accuracy

Testing
accuracy

2 80, 30 57.80 20.0
3 80, 50, 30 95.5 25.0

6.4.3 Best performing parameters on training and validation
sets

The following parameters had the best performance both on the training
and testing sets: learning rate = 0.01, epoch = 100, num hidden layers =
2(80, 30), activation function = ReLU

Set Accuracy
Training 95.5
Validation 27.0

6.4.4 Effect of learning rate and epoch number on cross en-
tropy loss

Figure 15: effects of learning rate = 0.01 and number of epoche (x-axis)
on cross entropy loss(y-axis).

Figure 16: effects of learning rate = 2.5 and number of epoche (x-axis)
on cross entropy loss(y-axis).

7 Conclusion and Discussion
The intent of this experiment was to compare the performance of
Convulational Neural Networks and a simple Multi-Layer Perceptron on
classification of image data. We observed that for both models,increasing
the density of hidden layers increased classification accuracy to some
extent. Other factors like learning rate, number of layers and type
of activation functions affected performance. For both models, ReLu
non-linearity had higher performance than Sigmoid activation func-
tion. Despite not being able to explore the entire parameter space,
Covulational Neural networks consistently showed an overall higher
performance than a simple Multi-layer perceptron.

In our experiments, the lack of extensive model selection due to
constraints of time and computational power may have caused com-
paratively lower performance across all tests. To better understand the
performance of these models, future experiments aught to have both
time and computing resources so that they can explore a wider parameter
space

8 Statement of Contribution
Ujjwal worked on the Convulational Nerual Netork. he developed the
model, tested, optimized and wrote its part of the report. Furaha worked
on the Multi-Layer Perceptron. Likewise, he developed, tested and opti-
mized it and wrote its report.
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