
Caching Needlemann-Wusnch scores to improve progressive

sequence alignment optimality

Furaha Damien1

1 McGill University

Monträal, Quäbec, Canada

Email: :furaha.damien@mail.mcgill.ca

Abstract — Progressive sequence alignment is a heuristic ap-

proach that is used in multiple sequence alignment. The ap-

proach builds up a final Multiple sequence alignment by com-

bining pairwise alignments beginning with the most similar

pair and progressing to the most distantly related1.The prob-

lem with progressive sequence alignment is that it is a greedy

algorithm that makes the most optimal alignment at every step

of the alignment. This means that if errors are made in the

earlier alignments, they are propagated to the final result. In

this paper, I propose a technique for increasing the optimality

of the algorithm. Rather than use a guide tree2 only as most

version of the progressive sequence alignments algorithms do,

I make us of the vertical information of the tree guides by stor-

ing the scores of the respective pairwise sequence alignments.

This means that given n sequences S1, S2, Sn, I first use

the Needlemann-Wusnch algorithm to calculate the pairwise

sequence alignment scores.I then create a ranking algorithm

obtains a list of all pairwise alignments sorted in decreasing

score for every sequence. The scores for each pair are cached.

These cached values are then referred to every time we want

to align the next sequence to the previous sequences beginning

with the highest scoring pairs, keeping in mind the tree guides

that I generate using the UGPMA algorithm. The proposed

method was applied to randomly generated 10 sets of DNA se-

quences. The results of these alignments were then compared

to those obtained from the traditional Progressive Sequence

alignments. Using this approach, I observe that I was able to

obtain the most optimal multiple sequence alignment. I also

run the algorithm on RNA sequences obtained form Balibase9

database. Due to complexity and size of the sequence, I fall

short of computational resources to run the alignment step of

the algorithm on these sequences, something that future re-

search should focus on.

1. Introduction

Multiple sequence alignment is one of the most important

tasks in bioinformatics and it is used to achieve some of

the most basic Bioinformatic tasks like phylogenetic infer-

ence. One of the approached used to achieve this multiple

sequence alignments is the Progressive sequence alignment

approach. This heuristic method first constructs a guide

tree2 that portrays the phylogenetic relationship between the

sequences. The tree is then used in the next step. Here

the sequences are aligned iteratively with the highly related

sequences(according to the phlylogenetic tree) aligned first

and then their alignements aligned to the next highly re-

lated sequence. This second step is a greedy approach as it

makes the most optimal alignment at that step without tak-

ing into consideration the subsequent sequences that form

the phylogenetic tree. What this means is that the algorithm

highly depends on the evolutionary tree created in the first

step. However, this approach does not always work espe-

cially if the sequences being aligned are very distantly re-

lated or very closely related. For instance, given four se-

quences S1, S2, S3, S4, if the a pairwise sequence alignment

algorithm produces S1 and S2 as being optimally aligned to

S3 and S4 with the highest alignment scores, this will create

a tree guide such that S1, S2 and S3 and S4 form sub-trees

with a shared root. As a result running the traditional pro-

gressive sequence alignment algorithm on these sequences

produce an alignment such that the alignment of S1, S2 is

aligned against that of S3, S4. This will however not be the

most optimal alignment. The problem is that when the vari-

ous paired alignments are grouped, they are seldom consis-

tent from one to another2. Thus, if sequence S1 is paired

with sequence S2, gaps may appear at various locations, but

when either S1 or S2 is aligned with a third sequence, say

S3 , the arrangement of gaps may be entirely different from

when they are aligned with S4. This means that, if a less

optimal alignment is made with regard to the subsequent se-

quences, the error is propagated to the final result. More or

so, this approach yields bad results when the sequences are

very distantly related. Since multiple sequence alignment

is an important procedure in bioinformatics and progressive

sequence alignment is one of the main approaches available

to achieve this, there is a need for an improvement to this

approach.

Here, I propose a new algorithm that adds an extra step to the

traditional progressive sequences alignment algorithm and

test it on several DNA sequences. The method has the abil-

ity to provide an optimal sequence alignment of distantly re-

lated sequences at the same run time as the current methods

used by T-COFFEE for example.

2. Previous work

Multiple sequence alignment is an important procedure in a

biology and bioinformatics. Given how important it is and

how costly it use to run the progressive sequence alignment

algorithm while not expecting the most optimal result due

to the its greedy nature, several projects have been build

around improving this algorithm. The suggested algorithms

range from those working on optimizing the tree guides2 to

adding new steps in the algorithms4. Da-Fei Feng et al2 pro-

poses an improvement to building the tree guides by adding

neutral elements in when aligning sequences which result in

gaped alignments. Julie D. Thompson et al4 uses sequence

weighting, position-specific gap penalties and weight ma-

trix choice to improve the algorithm. Both these approaches

improve the algorithm but they still short in some areas2,4.

3. Methodology:

The current improvements to the sequence alignment

problem still fall short of improving the optimality of the

progressive sequence alignment problem with good effi-

ciency. To improve this, I propose a new multiple sequence

alignment algorithm that uses the traditional pairwise

sequence alignment algorithms as its underlying algorithm.

I use the Needlemann-Wusnch pairwise sequence alignment

algorithm for this purpose. I use the score from the pairwise

alignment to build the tree guides. However, unlike other

algorithms, I cache these scores in a data structure and refer

to them in the sequential building of the Multiple sequence

alignment using a ranking algorithm that I create.

3.1. Algorithm

Given a set of n sequences that need to be aligned using

multiple sequence alignment, I first do a pairwise alignment

of all the sequences and store the pairwise sequence align-

ment scores in a n by n matrix. After aligning the scores, for

each of the sequences, I store a list of the scores obtained by

aligning this sequence against all the other n-1 sequences. I

then sort the list in decreasing order. This allows to know

which sequence is closely or distantly related to each of

the sequences. This information is used in the final step of

the proposed algorithm. In the next step, just like several

other sequence alignment algorithms, I build a tree guide

that represent the most probable evolutionary relationship

between the sequences. This phylogenetic tree is build

using the efficient clustering UPGMA5 algorithm.

I use the tree guides and the cached pairwise scores to

build our final multiple sequence alignment. Unlike the

traditional progressive sequence alignment approach that

looks at any of the two leaves that are part of the same sub-

tree, in this algorithm I refer to our score table generated

by the Needlemann-Wusnch pairwise sequence alignment.

From the table, we obtain the highest scoring pair as our

starting pair since the tree guides will have made these as

leaves of the same binary tree. We do this for all leaves of

a direct binary sub-tree. In the next step obatin the highest

scoring pair(alignment) as presented by both the tree guide

and the pairwise sequence alignment. From the cached list

of the pairwise sequence alignment scores of each of the

sequences in the pair, I look at their next highest scoring

2

3.2. Sudo code

pairwise alignment. If the sequences that comes next in the

list are the same for both of the sequences, we obtain the

alignment made by the sub-tree from which this sequence(s)

originates. We align this alignment against the previously

obtained alignment. If the two sequences have different

next highest scoring sub-sequences, then we obtain both

of their alignments in their sub-trees and align them to the

alignment. We do this for all the sub-alignments until we

obtain the final Multiples Sequence Alignment with all the

sequences.

3.2. Sudo code

Algorithm 1 pairwise sequence alignment
procedure PAIRWISE ALIGNMENT

Sequences← S1,S2...Sn

initialize matrix D[n][n]

loop:

for i = 0 to n do:

for j = 0 to n do:

if i != j then:

//Needlemann-Wusnch Algorithm

D[i][j]← score

loop:

for i = 0 to n do:

initialize iScores[n]

for j = 0 to n do:

if i == j then:

iScore[j]← in f inity

else:

iScore[j]← D[i][j]

iScore.sort()

The algorithm has two phase:

1. The pairwise alignment phase that uses the Needlemann-

Wusnch. It creates a an n by n matrix and n lists of size

n. This phase has two double loops, both running through

each sequence twice. the second double loop has an extra

step that sorts the lists, which we do using quick sort

Running time

Algorithm 2 Progressive sequence alignment
procedure PAIRWISE ALIGNMENT

treeT ←UPGMA

loop:

for all binary leaves do:

align maxScore pairs

for all binary alignments do:

for each leaf do:

maxSequence← max(iScore)

align maxScore sub-tree to this subtree

Return Alignment

first double for loop : O(n2.L2)

second double for loop : O(n2) + O(nlog(n)

space complexity:

first double for loop : = O(n2)

second double for loop : O(n2) + O(n2)

2. The second phase of the algorithm finds the multiple

sequence alignment. It builds the tree using UPGMA and

then sequentially builds MSA. At every alginment step, it

gets the highest scoring pair whcih was computed in the

first phase.

Running time: O(n2) + O(n2) * L = O(n2)∗L

Space Complexity : = O(n)∗2L

where L is the length of the longest sequence

3.3. Experimental set up

The algorithm is divided into two parts[section 3.2]. In the

first part, I used the Needlmann-Wusnch algorithm to obtain

pairwise sequence alignment and a list of scores indicating

how each of the sequence is related to the rest. I sort the

respective lists in decreasing order. The second part uses

both score matrix and the obtained lists and builds the tree

guides from which we build our MSA as explained[section

3.1]. To test the effectiveness of our approach, we used

a two-phase approach. In the first phase, we used simple

sequences.

s1 =CGCAGGCAACAGT GGCT TCG

s1 = GAACGGTAGAGGGT GACCAC

3

s1 =CAGTCCCGTCCCGACAGCAG

s1 =CT TAGCGGAGAGGCCCGCCA

s1 = ACCT GGCGGT TAGCGCT GCG

s1 =CGACGGCGACGCTCCTCACC

We used the used the Needlemn-Wusnch to

align them and UPGMA to generate tree guides.

Figure 1 : Tree generated from S1...S6 by UPGMA.

In this first phase, I did not write the code UPGMA algo-

rithm code but rather run it on the European Bioinformatics

institute8 servers. I then used the proposed algorithm to rank

into decreasing order the most closely related sequences.

Using this ranking, I then used the scores of the respective

sequences in relations to each other to iterative build the

multiple sequence alignment. In the second phase of the

algorithm I used sequence data obtained from Balibase9. I

obtained 11 RNA sequences with each being at least 400 pb

in length. I run our algorithm on these RNA sequences.

For both data sets that we run our experiment on, we

run the sequences on the DNA Alignment software8.

4. Results:

I run the algorithm on the two data-sets that I had. The

simple data set that contained six sequences each with ten

nucleotide. After running the algorithm, for each of the

sequence, I obtained the following ranking in relations

to the other sequences using the Needlemann-Wusnch

algorithm.

s1 : s5 > s6 > s2 > s4 > s3

s2 : s4 > s6 > s1 > s5 > s3

s3 : s5 > s6 > s1 > s4 > s2

s4 : s2 > s2 > s5 > s1 > s3

s5 : s1 > s4 > s3 > s6 > s2

s6 : s4 > s1 > s3 > s2 > s5

From the phylogenetic tree guide obtained after running

the UPGMA algorithm from the European Bioinformatics

Institute, and using the sequence relationship ranking that

I obtained from using Needlemann-Wusnch, I obtained a

Multiple sequence alignment[Table 1:] that was similar

what I expected. This first step was used as a control for

the development of my algorithm as running it on short

sequences would help me to easily pick out any instances

where it did not work.

s3 - - - - - - C A G T C C C G T C C C G A C A G C A G

s1 C G C A G G C A A C A G T G G C T T C G - - - - - -

s5 A C C T G G C G G T T A G C G C T G C G - - - - - -

s2 - - - G A A C G G T A G A G G G T G A C C A C - - -

s4 - - C T T A G C G G A G A G G C C C G C C A - - - -

s6 - - - - C G A C G G C G A C G C T C C T C A C C - -

Table 1 : MSA generated

In the second phase of the experiment, I run the algorithm

on the long sequence data sets obtained from the Balibase9.

The sequences were long, about 400 base pairs each.

Running the algorithm on them, I obtained a similarity

ranking and used this alongside the phylogenetic tree guide

also obtained using the European Bioinformatics institute

servers. However, I was unable to generate a multiple

sequence aligmnet with this data because I realized that I

had to build my own UPGMA algorithm to be able to feed

the tree that I would obtain in the the alignment algorithm.

5. Discussion and future work

The construction of multiple sequence alignments is

among the most important techniques to perform biological

sequence analysis, with important applications to many

areas of computational biology. The progressive sequence

alignment algorithm is one of the key techniques used to

achieve this multiple sequence alignment of biological

sequences. While this algorithm achieves optimal result

in most cases, its greedy nature means that most of the

times errors incurred in aligning sequences earlier on in

the process are propagated to the final Multiple Sequence

Alignment.

I have proposed an improvement to the progressive

sequence alignment algorithm that makes maximum use of

4

3.3. Experimental set up

the vertical information to improve the optimality of the

final Multiple Sequence alignment. By caching the scores

of every pairwise alignment of the sequences obtained from

Needlemann-Wusnch Algorithm and referring to the scores

when building the final alignment, I iteratively build the

alignment depending on the subsequent highest scoring

pairwise alignments based on the ranking algorith than I

create.

The proposed algorithm worked well on the short se-

quence data set that we tested it on. However, due to the

size of the long sequence data set, I did not run the last step

of the algorithm that involves building the alignment due to

shortage of compute power on my machine. In future work,

the algorithm needs to be run on long complex data sets like

the one obtained from the Balibase9

References

[1] Feng DF, Doolittle RF (1987). ”Progressive sequence alignment as

a prerequisitetto correct phylogenetic trees”. J Mol Evol. 25 (4):

351”360. doi:10.1007/BF02603120. PMID 3118049.

[2] Zhan, Q., Ye, Y., Lam, T. W., Yiu, S. M., Wang, Y., Ting, H.

F. (2015). Improving multiple sequence alignment by using bet-

ter guide trees. BMC bioinformatics, 16 Suppl 5(Suppl 5), S4.

doi:10.1186/1471-2105-16-S5-S4

[3]

[4] Julie D. Thompson, Desmond G. Higgins, Toby J. Gibson,

CLUSTAL W: improving the sensitivity of progressive multiple

sequence alignment through sequence weighting, position-specific

gap penalties and weight matrix choice, Nucleic Acids Research,

Volume 22, Issue 22, 11 November 1994, Pages 4673”4680,

https://doi.org/10.1093/nar/22.22.4673

[5] Sokal, Michener (1958). ”A statistical method for evaluating sys-

tematic relationships”. University of Kansas Science Bulletin. 38:

1409”1438.

[6]

[7] http://www.fluxus-engineering.com/align.htm

[8] https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=simplephylogeny−
I20191130−220442−0393−47447392− p1manalysis = tree

5

	Introduction
	Previous work
	Methodology:
	Algorithm
	Sudo code
	Experimental set up

	Results:
	Discussion and future work

