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Abstract — Genomic sequencing is an instrumental proce-

dure in biology and bioinformatics. The advent of rapid DNA

sequencing methods has greatly accelerated biological and

medical research and discovery. With the human genome be-

ing 3 Billion bases long, several methods have been developed

to sequence this genome at a low cost, yet with high and high

throughput. However, most of the methods fail to provide a

combinations of low cost, high-throughput and high accuracy.

One such method is the Single-molecule real-time sequencing

technique by Pacific Bioscience. This method has the ability

to sequence longer reads of up to 20,000 bases. However, its

higher error rate is a major obstacle. In this paper, I pro-

pose a new algorithm for increasing the accuracy of highly-

contiguous de novo2 assemblies using PacBio sequencing. In

the algorithm I use the Needlemann-Wusnch sequence align-

ment algorithm as the underlying algorithm and shortgun

sequencing5 to perform assembly based on the overlap-layout-

consensus approach. I develop a ranking algorithm that given

n sequences, for every single sequence, ranks the most prob-

ably suffix and prefix sequence for that sequence that gener-

ates most optimal genome assembly. Using a variation of the

Needleman-Wusnch algorithm that minimizes indel mutations

and the developed ranking algorithm as the key components

of my algorithm, I observe that I am able to develop an algo-

rithm with a running time of 0(n2.l) given n sequences with

the longest of them having l nucleotides. Due to problems with

my ranking algorithm, I am only able to achieve a 44.7% ac-

curacy, something that future work needs to focus on.

1. Introduction

Genome sequencing is an important procedure in biology

and bioinformatics. Human genome sequencing has been

instrumental in identifying genomic causes of rare disease

and understanding variation in complex disease. It has

helped drive epigenetic research to new heights and de-

velopment of personalize medicine. For a long time, ge-

nomic sequencing was a very costly procedure but recently

advances in sequencing technology have led to lower se-

quencing costs and the ability to produce large volumes

of data, enabling genome Sequencing to be a powerful,

broadly used tool for genomics research. Methods for se-

quencing have been developing ranging from Nanopore

Sequencing that has lower throughput to higher through-

put methods like Sequencing by synthesis (Illumina)4 and

higher throughput methods like Pacific Biosciences3 that

does Single-molecule real-time sequencing. Pacific Bio-

sciences sequences methods is a particularly interesting

method due to its high throughput. It can be used for reads

of up to 100,000 bases in length. This is particularly impor-

tant given how large the human genome is for example. The

method can be used in de novo sequencing, that is, methods

used to determine the sequence of DNA with no previously

known sequence. This means that longer reads will usu-

ally have sequencing errors. Since this de novo sequenc-

ing using PacBio sequencing is applied to reads of greater

than 100,000 bases, PacBio sequencing usually has a higher

rate of sequencing errors with only an 87% raw-read accu-

racy in most cases3. Since the human genome is very long,

there is a need for efficient sequencing machines and al-

gorithms that will combine higher accuracy, low cost and

higher throughput. Most of the algorithms and machines

provide one one the cost of the other.



2. Current alignment algorithms for PacBio

reads

The current sequencing technologies have the ability to

cover much longer reads as compared to the previous

technologies. The technologies are able to get over the

length limitation and facilitate assembling or analyzing of

complex genome regions such as GC islands and repeats

in downstream. Due to this advancement in sequencing

technologies, several sequencing projects have been devel-

oped around the long reads idea. Despite the increase in

the number of projects on long reads sequencing, in most

cases there is still up to 15%6 sequencing errors dominated

by insertions and deletions, so it is important to correct

these errors.

To correct these errors, several algorithms have been

developed. These error correction algorithms range from

Short read assisted correction 7 algorithms that align the

corresponding short reads from the same species to the

long reads and correct them, so they are suitable for the

long and short read hybrid projects to Self-correction8

algorithms that align the long reads to themselves and

find multiple sequence alignments among the long reads

to correct them, suitable for the long read only projects.

These error correction algorithms still have several flaws.

For example, the error correction algorithm 9 finds seeding

k-mers among the long reads and then the alignments by

dynamic programming. This comes with some challenges.

It is challenging to make correction with fast speed,

because it is time consuming to align the long reads of

usually several millions to each other. It is also challenging

to correct a sufficient amount of read bases, i.e. to achieve

high-throughput self-correction, because it is also difficult

to align the long reads of about 15% errors to each other6.

This shows that despite that several algorithms have been

developed to reduce the error rate in PacBio sequencing,

there is still a challenge to achieve the desired high

throughput at higher accuracy. In this paper, I propose a

new long reads geenomic assembly algorithm that strives to

achieve high accuracy and better running time complexity

using the variation of the Needlemann-Wusnch algorithm

and a ranking algorithm that I propose a key components.

3. Methodology

Looking at the shortfalls of the current PacBio alignment

algorithms, I propose a new fast and high-throughput algo-

rithm for long-read based on the overlap-layout-consensus

approach. I use the Needlemann-Wusnch algorithm as

wrapper for my algorithm to achieve high precision. Like

most PacBio alignment, I follow a de novo approach

where the obtain reads are are assembled with no reference

genome but purely using their overlapping regions. In

the approach, I assume that the PacBio sequencer induces

errors in the reads but that the errors can not possibly be

greater than 50% 6. my approach assumes that indel muta-

tions are minimal and gives much emphasis to substitutions

3.1. The algorithm

In the algorithm, I used the Needlemann-Wusnch pairwise

sequence alignment algorithm as my underlying algorithm

in the first phase of finding overlapping regions in the long

sequence reads. I use a variation of the algorithm to obtain

optimal sequence overlap region. To do this, I run the

Needlemann-Wusnch algorithm on the reads. However,

unlike the normal Needlemann-Wusnch9, I do not allow

gaps in the alignment of the reads.

Given reads R1,R2....Rn obtained from sequencing an

unknown genome Gi, For each of the reads, I run the

Needlemann-Wusnch algorithm on the read against the

remianing n-1 reads. However, unlike the traditional

Needlemann-Wusnch, I run the algorithm on the read

against the reverse strings of the other n-1 reads. In addi-

tion to that, my variation of the algorithm does not allow

gaps in aligning the sequences. The n-1 sequences are

aligned against the primary sequence in a sliding manner

backwards. At every step of the alignment, I keep track of

the current maximum score and the ei,s j that generated the

score.
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3.2. Sudo code

Figure 1 : Alignment of the forwardRi against reverse R j read at

the beginning of the alignment

Figure 2 : Alignment of the forwardRi against reverse R j

read after 3 iterations

After aligning each of the n-1 sequences against the

primary sequence, I record the score of the highest scoring

alignment of read against each of the other reads and the

obtained ei,s j for that specific score.

The second phase of the algorithm involves using the

obtained ei,s j for each of the n reads against the other n-1

reads to assemble the reads and generated the unknown

genome Gi. To do this, for each of the reads, I have to look

corresponding overlap scores obtained against other reads

both in its forward and backwards strands. This way, I get

to know which other two reads flank this read. However,

these other reads may have entirely different reads flanking

them which are not the read under consideration. To solve

this, I create a new object that contains the score, the ei,s j,

the direction of alignment, the read itself and the specific

read that this score was against. This means that, I generate

nxn instances of this object. I create an array of these

objects and sort it by decreasing score. This sorted array is

what I use for assembly of the reads and generation of the

actual Genome.

Iteratively, I go through the array from index 0. For each

index, I obtain the object at that index and get the reads

that generated that score. I then assemble them in the

orientation specified by the object itself. If there has been

already an assembly of the sequences with other reads,

then we know that there is an other reads that had a better

score on that orientation. In this case, we move to the

next element in the array. This approach promises to work

because, since we sorted all the nxn overlaps by decreasing

score, we are assured that in this particular orientation this

is the only overlapping area that has the highest score for

these particular sequences.

3.2. Sudo code

Algorithm 1:

Running time:

0(n2.l) + 0(n2) + n2log(n2) = 0(n2.l)

O( Space complexity:

0(n2)

Algorithm 2:

Running time:

0(n2)

Space complexity:

0(n2)

Where n is the number of long sequence reads and l is the

length of the longest read

3.3. Experiment set-up

The algorithm is divided into two phases. As shown above,

The first phase uses a variation of the Needlemann-Wusnch

pairwise sequence alignment to compute optimally over-

lapping regions amongst the reads. The second phase of

the algorithm uses the computed overlapping regions to

assemble the reads in to the required genome. These two

phases of the algorithms are different from the current

long reads assembly algorithms like short-gun sequencing.

To test the effectiveness, efficiency and sensitivity of the

algorithms, we run some tests on using two sets of data.

First, we used short reads that we generated as a control to

validate the algorithm. A sudo genome of 100 nucleotide

was broken down into 5 short reads and the algorithm was

run on them.

Gi = ATGGATTTATCTGCTCTTCGCGTTGAA

GAAGTACAAAATGTCATTAATGCTATGCAGAAAATCTTA-

GAGTGTCCCATCTGTCTGGAGTTGATCAAGGAAC
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Algorithm 1 Generate overlapping regions
procedure PAIRWISE ALIGNMENT

reads← R1,R2...Rn

initialize matrix D[n][n]

initialize matrix P[n][n]

initialize matrix S[n][n]

initialize array A[nxn]

loop:

for i = 0 to n do:

for j = 0 to n do:

maxScore← 0

if i != j then:

//Variation of NW Algorithm

if score > maxScore then:

maxScore← score

ei← i

s j← j

D[i][ j]← score

Ob ject← (maxScore,ei,s j, i, j)

S[i][ j]← maxScore

P[i][ j]← (ei,s j)

create object of score, overlap and orientation:

loop:

for i = 0 to n do:

for j = 0 to n do:

if i < j then:

orien← reverse

else: orien← f orward

score←M[i][ j]

region← D[i][ j]

Ob j← (score,region, i, j,orien)

A[i]← Ob j

A.sort()

return A

Algorithm 2 Reads Assembly
procedure READS ASSEMBLY

arrayA← A

loop:

for element e : A do:

if (ei,s j not assebled) then:

Assemble

else:

continue

Return Gi

reads =

R1 = AT GGAT T TATCT GCTCT

R2 =T GCTCT TCGCGT T GAAGAAGTACAAAA

R3 =TACAAAAT GTCAT TAAT GCTAT GCAGAA

R4 =GCAGAAAATCT TAGAGT GTCCCATCT GTC

R5 =TCCATCT GTCGGAGT T GATCAAGGAAC

Running the algorithm on the obtained reads, we obtained

genome G

G = ATGGATTTATCTGCTCTATGGATT-

TAATGGATTTATCTGCCGTCCAAATTCAGCA-

GAAAATCTTAGAGTGTCCCATCTGTCTCCATCCATCTGTCGGAGTTG

ATCAAGGAACATGGAT

After obtaining G, I run it against the original genome Gi

to obtain the accuracy of the predicted genome. This test

set was used as a control for my experiment.

Next, we run the algorithm on PacBio sequencing

data from a genome sequencing project on Leishmania10.

Since Leishmania is a species that has already been

sequenced, we were able to compare our data with the the

actual genome.

4. Results:

I run the new PacaBio long reads alignment algorithm on

two sets of reads. On the first set of reads discussed in

section 3.3, the initial genome was know and thus it was

easy to verify the outcome of the genome assembly. After

running the algorithm, I obtained a genomic sequence that
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3.3. Experiment set-up

was 44.74% similar to the original genome. I found this

by running sequence comparison of the nucletiodes of the

actual genome and the assembled genome.

Running the algorithm on the long sequence set of

pacbio reads coming from the sequencing of Leishmania

Donovani was a bit of a challenge because my algorithm

proved to be extremely slow. I was unable to completely

run the entire chromosome1 sequence. It took more

than hour on each attempt and due to overheating of my

machine, I terminated the process .

5. Discussion and future work

A new multiple long reads assembly algorithm for PacBio

reads has been proposed to improve on the sensitivity and

running time of the long sequence reads genome assembly.

The algorithm uses a variation of the Needlemann-Wusnch

algorithm to first find the pairwise overlapping regions

between reads and then uses these overlaps for genome as-

sembly proves to run in an improved running time of O(n2).

However, the error rate remains very high and it is

higher than the traditional genome assembly algorithms.

This low sensitivity is mostly due to the way the algorithm

ranks the most probable reads that overlap in the actual

genome depending on the overlap score obtained by the

algorithm. The algorithm ranks the overlap purely by the

similarity scores of suffixes and prefixes of two respective

reads. The algorithm does this in a greedy approach as

it does not put into consideration subsequent reads that

might have a less similarity score but optimal overall due

to sequencing errors that result in indel mutations. This is a

big shortfall of the algorithm and it is something that needs

to be worked on to improve the sensitivity of the algorithm.

A memoization dynamic programming algorithm that

looks at the similarity scores that would be obtained by

the subsequent reads before committing to a particular

assembly would go a long way to improve the sensitivity

of this algorithm. This is something that future work would

look into.
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