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Abstract

This project provides an analysis of dis-
criminative and generative machine learn-
ing as typified by logistic regression and
naı̈ve Bayes. In the work, we develop the
naı̈ve Bayes and logistic regression machine
learning algorithms from scratch. We use
k-fold cross validation to fine tune param-
eters of the models and carry out model
evaluation. The aim of this investigation is
to evaluate the performance of both models
on a range of corpora with varying charac-
teristics, including size of the corpora, and
attribute types, whether continuous or cat-
egorical. Using four benchmark datasets,
we observe that while the overall perfor-
mances of the models are high, there is a
negative trend with the increase in corpora
size for both models. The comparison and
validation of the outcomes of each model
were achieved using statistical evaluation
measures. Overall, naı̈ve Bayes shows good
performance on smaller datasets and out-
performs logistic regression. However, on
larger datasets1, logistic regression depicts
a superior performance. While K-fold cross
validation helped in parameter tuning, we
found that increasing the size of the the
training did not always improve the accu-
racy of our models. The investigation shows
that it is not possible to say which model is
the best as their distinct performances de-
pend on the corpora used.

1 Introduction
Several studies have compared linear classification
techniques in machine learning. These studies2 have
shown that naı̈ve Bayes and logistic regression can lead
to two distinct regimes in terms of which algorithm
performs better as corpora sizes vary.

The performance of the algorithms depends on a
wide range of factors. Ranging from the size and
structure of the corpora being used to the parameters
used in tuning the models themselves. Because of this,
it is important to understand what model works better
when building solution for a particular application.
In this project, we aim to understand the variation in

performance of naı̈ve Bayes and logistic regression
depending on the dataset being used. We also explore
different settings that could enhance or diminish the
performance of these models.

In our investigation we use four datasets of vary-
ing sizes and complexity to compare the performances
of these two algorithms. We vary the number of
training, testing and validation sets in a quest to mea-
sure the optimal performance of both models on each
corpus. For each corpora, we explore what attributes
contribute more to the training and performance of
the models. We perform analysis on the dataset and
experimentally remove and re-add features based on
standard deviation and covariance, while keeping
track of the models’ perfomance on the respective
datasets. We split our respect dataset into training,
validation and testing sets in validation and evaluation
of our model. We compare the performance of the
model on the validation and the testing sets to help
in parameter tuning and prevent overfitting. Using
evaluation measures like accuracy, confusion matrix,
recall[...] like O. L. Mangasarian et al.3, we observe
that naı̈ve Bayes classifier has a slightly higher overall
performance than logistic regression in cases where
the models are evaluated on smaller datasets.

1.1 Logistic Regression
Logistic regression models the probabilities for clas-
sification problems with two possible outcomes. It’s
an extension of the linear regression model for classi-
fication problems. Instead of fitting a straight line or
hyper plane, the logistic regression model uses the lo-
gistic functions to squeeze the output of linear equation
between 0 and 1. The Logistic Function is defined as:

Logistic(x) =
1

1 + e−x)

The hypothesis of logistic regression tends to limit the
cost function between 0 and 1. Therefore, linear func-
tions fail to represent it as it can be a value greater than
1 or less than 0 which is not possible as per the hypoth-
esis of logistic regression.

0 ≤ hθ(x) ≤ 1

In order to map predicted values to probabilities, we
use the logistic function. The function maps any real
value into another value between 0 and 1. In machine
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learning, we use Logistic to map predictions to proba-
bilities.

Logistic Regression becomes a classification tech-
nique only when a decision threshold is brought
into the picture. The setting of threshold value is a
very important aspect of logistic regression and is
dependent on the classification problem itself.
Hypothesis Representation :

σ(Z) = σ(β0 + β1X)

we expect that our hypothesis will gives values between
0 and 1.

hθ(x) = σ(Z)

hθ(X) =
1

(1 + exp−(β0 + β1X))

we expect our classifier to give us a set of outputs or
classes based on probability when we pass the inputs
through a prediction function and returns a probability
score between 0 and 1. Cost function The cost func-
tion represents optimization objective i.e. we create a
cost function and minimize it so that we can develop an
accurate model with minimum error.

Cost(hθ(x), y) =

{
− log(hθ(x))ify = 1

−log(1− hθ(x)ify = 0

(1)

when implementing logistic regression, our job is to
learn weights for the construction of decision bound-
ary, so that predicted target values are approximately
equal to the test target. To learn the weight parameters
we define the the above cost function which we should
use to train the logistic regression model. A cost
function is an estimator of how good or bad our model
is in predicting the known output in general. For the
purpose of calculating gradient we have to simplify the
above equation to the one given below

−1

m
[

m∑
i=1

yi ∗ log ∗ hθ(xi) + (1− yi)log(1− hθ(xi)]

Gradient Descent To reduce the cost value we have
to use Gradient Descent. The main goal of Gradient
Descent is to minimize the cost value J(θ)

1.2 Naive Bayes

Naive Bayes is a generative linear classification
algorithm used in binary and multi-class classification
problems. The algorithm makes a strong assumption
and rather than calculating the probability of each
feature, the features are assumed to be conditionally
independent to each other with respect to their class
labels. Despite the fact that this is a very strong
assumption, naı̈ve Bayes generally does well when
compared to other complex models4

P (Ck|X) =
P (Ck)P (x|Ck)

P (x)

Being based on conditional probability, naı̈ve Bayes
uses Bayes’ theorem to compute the maximum like-
lihood of an instance having a particular class label.
Given the instance labels, the algorithm finds the
maximum likelihood that the instance belongs to a
certain class assuming that the instance features are
conditionally independent.

P (x|Ck) = ΠD
d=1P (xd|CK)

Where, P (x|Ck) is the likelihood of instance x belong-
ing to classCk given that the features 1 to d of X belong
to the same class. It is common to maximize the loga-
rithm likelihood instead to prevent underflow of proba-
bilities.

2 Datasets
In this project, we used a total of four distinct datasets.
For Dataset 1 (Ionosphere), the aim is to predict
whether a radar return from ionosphere is ‘good’ or
‘bad’. This radar data was collected by a system in
Goose Bay, Labrador. The Ionosphere Dataset5 has
351 instances. Each instance has 34 continuous at-
tributes and a label of ”good’ or ”bad”. For Dataset
2 (Adult Data Set): also known as “Census Income”
dataset, the goal is to anticipate whether the income
exceeds 50K/yr based on census data. This dataset has
48842 instances. Unlike the first set, the instances have
a combination of continuous and categorical attributes.
We also operated on a Beast Cancer dataset that classi-
fies 699 instances as ”1”, ”2” or ”3” with each instance
having 10 continuous attributes. Lastly, we worked on
a Lung Cancer dataset with 32 attributes classified as
”B” or ”M”, each having 56 continuous attributes.

2.1 Pre-processing and clean up
Data pre-processing involves transforming raw data
into an understandable format. In real world, data are
generally incomplete. Therefore, after acquiring the
datasets, we started off by looking for missing val-
ues to avoid drawing an inaccurate inference about the
data. We handled the null values and removed all in-
stances with missing or malformed features from the
four datasets. For example, instances with ’?’ in
dataset 2. Since machine learning models are based
on mathematical equations, we only want to deal with
numbers. Consequently, we used One-Hot Encoding to
deal with categorical variables.

2.2 Data analysis
In addition to malformed or missing features, data can
also be noisy and inconsistent. It is always a safer
course of action to compute basic statistics on the data
to understand it better. As a result, we calculated some
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stats, such as, mean, standard deviation and IQR of
the attributes. For each dataset, we used count plots
and histograms to visualize the distributions of features
grouped by class. Moreover, computing the correla-
tions between the features gave us a better insight into
which features have a greater influence on the class la-
bel.

3 Experimental Methods
In order to investigate the performance of Naive Bayes
against Logistic regression, we developed the models
from scratch and performed tests on the models repeat-
edly. Depending on respective datasets, we tuned the
input parameters to the model.

3.1 Model Design
3.1.1 Libraries used
In building the models, we used python’s built in li-
braries numpy and pandas to load the datasets into ar-
rays. We did not import any third party libraries like
Sklearn or NLTK. Other libraries that we used were csv
, random , pandas and math.

3.1.2 Building Naive Bayes
The naı̈ve Bayes model implemented for this ex-
periment uses the Bayes’ theorem to calculate the
logarithmic likelihood of instances belonging to a
class. We use Gaussian probabilities for respective
features to calculate likelihood of class labels. To
prevent underflow of the logarithmic function, features
with zero standard deviation are removed from the
datasets. A parameter ε to the function.

P (x|Ck) = ΠD
d=1P (xd|CK)

Introducing Log likelihood means that if we want to
know which class(ŷ) x belongs to,

ŷ = argmaxk∈(1...|c|)P (Ck)Πn
i=1P (xi|Ck)

taking log likelihood, this becomes:

ŷ = maxk∈(1...|c|)(log(P (Ck)+ε)+

n∑
i=1

log(P (xi|Ck)+ε))

The parameter ε is set at e−100 so that it sorely serves
to prevent under flowing of the log function in cases of
zero variance amongst features.
The key function of the model is the naive bayes
function that calls a fit function to fit the training set
and then uses the testing set to predict class labels. We
use K-fold cross validation to evaluate the performance
of our model on unseen dataset. This helps in tuning K
to maximize the accuracy of the model.

3.1.3 Building Logistic Regression
Logistic regression is statistical method for predict-
ing binary classes. Logistic regression hypothesis
generalizes from the linear regression hypothesis in

that is uses the logistic function where it predicts the
probability of occurrence of a binary event utilizing a
logistic function

Logistic(x) =
1

1 + e−x)

The logistic function also known as Sigmoid function
has Asymptotes at 0 and 1, and it crosses the y-axis at
1 and 0.5. Linear Regression Equation :

y = β0(0) + β1X1 + ...+ βn(Xn)

where y is dependent variable , target variable , and

x1, .., xn

are features of given instance. we then apply Sigmoid
function on linear regression as follows :

p =
1

1 + e−(β0(0)+β1X1+...+βn(Xn))

The target variable in logistic regression follows
Bernoulli Distribution and Estimation is done through
maximum likelihood. Our Main Goal is to learn the
weights i.e. β0, β1, ..., βn to predict our target variable.
Logistic Regression Model takes in Feature Matrix,
which has features of any given instance as columns
and rows as different instance. In Every iteration
we updates the learned weights based using the Cost
function given below :

−1

m
[

m∑
i=1

yi ∗ log ∗ hθ(xi) + (1− yi)log(1− hθ(xi)]

The cost function has to be minimize in order to mini-
mize the error in learned weights and this is done using
Gradient Descent method. The key function in Logistic
Regression model is that it calls a fit function to learn
weights and then uses Test set to predict class labels
and calculate the accuracy of the model. We use K-
fold cross validation to evaluate the performance of our
model on unseen data set. This helps in tuning K to
maximize the accuracy of the model.

3.2 Experimental Settings and Model Parameters
Despite there being a large performance cost of some
datasets on the models, we run tests repeatedly. Given
that the dataset had features of different characteristics,
we parameterized the models depending on the dataset
being tested. We trained the models and used K-fold
cross validation multiple times and used the best
obtained parameters to run our testing sets.

For naı̈ve Bayes, 10-fold cross validation achieved
the best mean accuracy except for the ionosphere
dataset5 which had k=300 as its best cross-validation
parameter. Despite setting ε = e−100 in maximizing
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log likelihood, we continuously varied it and noted the
value that give our model the best performance.

Similarly, For Logistic Regression, 10 fold cross
validation with learning rate set to 10−2 , epoch = 300
and taking ε = e−6 for all datasets achieved the best
mean accuracy. decreasing from ε = e−6 to ε = e−20

decrease the mean accuracy on data set ”ionosphere”
from around 83% to 74% and for ”Breast Cancer”
from around 50% to 38%. ”Lung Cancer” data set
seems to be unaffected with the changes in ε values.

3.3 Test Conditions

In conducting the experiments,test conditions were set
depending on the dataset. For all the datasets but lung
Cancer, the dataset was split into 80%, 10% and 10%
for training, validation and testing respectively. The
testing set was left unused until the testing phase.

4 Results

For all the datasets used, the primary evaluation mea-
sure was accuracy for both the validation set and the
testing set. We also obtained the confusion matrices
for the datasets.

4.1 Logistic Regression Results

The ”Ionosphere” dataset had 351 instances. We
trained the model using learning rate 10−2. We
used 10% for testing the model using the learned
weights. We used K = 10 for cross validation and
epoch = 700 and we obtained mean accuracy of
around 83.92% ≈ 84% on the test set. Decreasing the
epoch to ≤ 700 or 700 decreases the mean accuracy
for the data set during cross validation.
In ”Lung Cancer” dataset, we trained the model with
learning rate = 10−2, and epoch = 700 with k = 10
for cross validation. We obtained the mean accuracy of
around ≈ 50.0%. Changing hyper parameters values
did not have much effect on the mean accuracy of the
model. Using the learning rate 0.1 resulted in lower
mean accuracy.

In ”Breast Cancer” dataset, we used 10% of the
dataset for testing the model using the learned weights.
We used learning rate = 10−2 , epoch = 700 ε = e−6

for training the model. We achieved the mean accuracy
of 61.41% ≈= 61% during cross validation.

In ”Census Income” dataset, we used 10% of the
dataset for testing the model using the learned weights.
We used learning rate = 10−2 , epoch = 700 and
ε = e−6 for training the model and achieved mean
accuracy of ≈ 74% during cross validation.
To further understand the performance of the model on
the datasets, we obtained the confusion matrices of the
datasets.

IS AD BC LC
TP 36 0 0 0
FP 1 683 42 0
TN 0 2036 12 0
FN 0 0 0 5

Table 1: Depiction of confusion matrices on the datasets for
logistic regression model
IS = Ionosphere, AD Adult, BC = Breast Cancer, LC = Lung
Cancer

From the given plot we can summarise that with every
iteration of model the accuracy of the model increase linearly

4.2 Naive Bayes Results

The Ionosphere dataset had 351 instances. We used 10%
for testing the model. Using K = 300 for cross validation,
we obtained an 88.00% mean accuracy on the validation
set and a 94.29% accuracy on the testing set. Applying
the model to Dataset 2, we trained on 80% of the 30162
data points and tested on 10%. The model achieved mean
accuracy of 72.70% on the validation set and 72.34% on
the testing set. The lung cancer data set which had 27 data
points after prepossessing was split in the same manner,
obtaining 90.00% and 100% accuracies on the validation and
testing sets, respectively. Finally, we run the experiment on
the breast cancer dataset. Using K=20 from cross validation
resulted in a 92.32% accuracy on validation set and 83.53%
on testing set.
To further understand the performance of the model on the
datasets, we obtained the confusion matrices for the datasets.

IS AD BC LC
Test
size

35 3016 56 2

TP 15 1401 33 2
FP 0 0 0 0
TN 18 781 11 0
FN 2 834 12 0

Table 1: Depiction of confusion matrices on the datasets
IS = Ionosphere, AD Adult, BC = Breast Cancer, LC = Lung
Cancer

We also looked at the performance of the model
with respect to the training set size. In particular,
we tested this on the breast cancer data set and ob-
served how the accuracy of the prediction changed
when we tested using an unseen testing set. The
graph below shows how the performance changed.
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Fig 1: effects on training set size on prediction accu-
racy

We observe that we get the highest accuracy (92%) when
we use 90 percent of the dataset for training.

5 Discussion and Conclusion
Both naı̈ve Bayes and logistic regression can be used for clas-
sification of the data but they excel in different aspects. Naı̈ve
Bayes being a generative model, estimates a joint probabil-
ity, given feature x and the label y, from the training data.
Whereas, logistic regression being a discriminative model,
estimates the probability p(y|x) directly from the training
data by minimizing error. Naı̈ve Bayes places a strong con-
straint on the features of a given instance by assuming all
the features being conditionally independent to each other.
Therefore, if some of the features are strongly dependant
on each other, thnn prediction might be poor. But in real
world example this strong constraint followed by naı̈ve Bayes
model seem to work in most situations. On the other hand,
logistic regression splits feature space linearly and does not
put conditional independence constraint on the features of the
given instance.
Both models seem to have some limitations. Naı̈ve Bayes
works well even with less training data, as the estimates are
based on the joint density function. However, Logistic regres-
sion model might over fit the data, if given a small dataset to
work with. We can follow various approaches to optimize the
results.
for example: With naı̈ve Bayes, when the training data size
is less relative to the features, the information on prior prob-
abilities helps in improving the results.
And with logistic regression model, when the training size is
less relative to the features, Lasso and Ridge regression will
help in improving the results.

6 Statement of Contributions
Ujjwal Kumar implemented logistic regression and ran ex-
periments. Furaha Damien worked on Naive Bayes and ran
experiments. Mobassera Zaman did data analysis and prepro-
cessing. All of us worked on the report.
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